标签: 谷歌 AI Overviews

  • 谷歌的 AI Overviews 对网站流量有何实际影响?

    AI 搜索时代,很多站长、运营每天打开分析工具,都会发现一个共同现象:展示量还在,点击却少了一大截。最直观的嫌疑人,就是出现在结果页顶部的 Google AI Overviews(AI 概览)。 本文围绕两个核心词:GEO(Generative Engine Optimization,生成引擎优化)AI Overviews,尽量用通俗的方式回答三个问题:

    • AI Overviews 现在到底覆盖了多少搜索?砍掉了多少网站流量?
    • 哪些类型的查询损失最大?哪些查询反而变得更「值钱」?
    • 作为 SEO / GEO / 内容负责人,我们该怎么做结构调整,活下去还要继续增长?

    一、AI Overviews 是什么?为什么会影响流量结构?

    AI Overviews 是谷歌在搜索结果页顶部展示的一段AI 生成的综合回答:它会调取多个网页内容、知识图谱和结构化数据,自动写出一段答案,再在下方列出少量引用链接。从用户视角:很多原本需要点击进入网站才能获取的信息,现在在搜索结果页就已经看完了。

    根据 Semrush 统计,2025 年春季,AI Overviews 已经出现在约 13% 的谷歌搜索中,其中 80% 以上属于信息型查询,但商业和导航类查询的占比也在持续上升。这正是我们关心 GEO 的起点:搜索不再只是「10 个蓝色链接」,而是「一个 AI 答案 + 少量链接」的混合形态。

    同时,咨询机构 Bain 的调研发现,在 AI 概览和零点击搜索普及后,整体网站自然流量平均下降约 15%–25%。换句话说:搜索总量还在增长,但真正能导入网站的点击在减少。

    二、数据视角:AI Overviews 到底砍掉了多少点击?

    和「感觉流量变少了」相比,数据更残酷也更清晰。多家机构对 AI Overviews 上线前后的点击率做了对比,核心结论高度一致:只要 SERP 顶部出现 AI 概览,下面所有结果的点击率都会明显下滑。

    • Seer Interactive 的研究显示:在出现 AI Overviews 的查询中,自然结果的平均点击率从 1.41% 降到 0.64%,跌幅超过一半;而在没有 AI Overviews 的查询里,点击率反而略有提升。
    • Ahrefs 对 30 万个关键词的分析表明:当 SERP 中出现 AI Overviews 时,原本排在第一位的网页点击率平均再下降约 34.5%
    • Pew Research 和多家分析公司发现:在展示 AI 概览的结果中,用户点击任何链接的比例约只有 8%,而没有 AI 概览时约为 15%,等于整体点击被砍掉近一半。
    • 对新闻和资讯网站,影响更为极端——有报告显示,当页面被折叠到 AI 概览之下时,来自谷歌的流量最多可减少 70%–80%

    总结一下: AI Overviews 出现 → SERP 顶部被一个超大的「AI 答案卡片」占据 → 用户信息需求提前被满足 → 下方网站整体分到的点击变少。 这不是排名的问题,而是「总盘子」变小的问题。

    三、按查询意图拆解:哪些流量在流失,哪些在变贵?

    3.1 顶层信息型查询:被 AI 总结严重侵蚀

    典型问题包括:

    • 「什么是 GEO?」
    • 「AI Overviews 是什么意思?」
    • 「如何写 SEO 标题?」

    Semrush 的数据表明,接近 90% 的 AI Overviews 都发生在这类信息型查询上。对用户来说,AI 生成的一屏答案就足够「搞懂概念」,自然不会每次都再点进某一个具体网页。

    这带来的直接后果:

    • 百科式、纯科普型内容的自然流量大幅下滑;
    • 「什么是 / 为什么 / 有哪些类型」这类关键词的 ROI 显著下降;
    • 只靠「内容农场 + 基础科普」吃饭的网站,会感觉像被按下了暂停键。

    3.2 更复杂、更深入的查询:流量变少但更「值钱」

    当问题变成:

    • 「B2B SaaS 如何在 AI 搜索时代做 GEO 策略?」
    • 「如何评估 AI Overviews 对我们线索量的真实影响?」
    • 「适合中小企业的 GEO 落地步骤有哪些?」

    AI Overviews 依然会给出一段总结,但很难直接替代详细方案、案例拆解和操作步骤。 这类查询有几个共同特征:

    • 涉及多个条件、角色、预算与风险权衡;
    • 需要具体案例或过往经验支撑决策;
    • 常常是用户已经有初步认知、正在「评估与选型」。

    研究与工具数据都在显示:在这类中后段查询中,虽然点击减少,但留下的访问更愿意停留、更愿意咨询或试用。也就是说:流量不再多,但每一次点击更「贵」。

    3.3 商业与事务型查询:流量被重新分配,而不是「全部蒸发」

    例如:

    • 「某城市附近的 SEO 公司」
    • 「AI 内容检测工具价格」
    • 「某品牌 + 多少钱 + 套餐对比」

    在这类商业查询中,AI Overviews 会倾向于:

    • 列出几个主要选项,并总结各自特点;
    • 直接给到「官网」「价格页」「本地商家卡片」的链接;
    • 减少用户对第三方测评站、内容农场的依赖。

    这意味着:

    • 导购、比价、评测的网站会被削弱;
    • 而真正提供服务或产品的官网,只要 GEO 做得好,反而有机会从 AI 概览中直接获得更精准的商机线索。

    3.4 品牌导航型查询:品牌词也不再绝对安全

    以往我们会觉得:「用户搜我品牌名,第一就是我官网,没啥好担心的。」 但随着 AI Overviews 对导航类、品牌类关键词的覆盖度增加,SERP 可能变成这样:

    • 顶部:AI 总结一段「某品牌是什么、适合谁、有哪些优缺点」;
    • 下面:官网 + 垂直评测 + 竞品对比 + UGC 内容。

    多份研究和业界观察指出,当品牌词也触发 AI Overviews 时,即使官方网站仍然排第一,整体点击率也会明显下降,同时 AI 内容中如何描述品牌,会直接影响用户的第一印象。这迫使我们必须思考:不仅要做「品牌保护」,还要做「Brand GEO」——让 AI 用我们希望的方式介绍我们。

    四、从 GEO 视角看:AI Overviews 在「挑选」怎样的内容做答案?

    从 GEO 的角度,我们关心的问题是:AI 在生成答案时,为什么会引用某些站点而忽略另一些? 外部数据 + 谷歌公开信息,至少可以推断出三类信号。

    4.1 传统 SEO 信号依然重要,只是变成「门票」

    • 权威性与信任度:媒体、官方文档、知名品牌、政府与科研机构的内容,更容易进入 AI 概览。
    • 相关度与质量:依然要解决用户问题,而不是堆关键词;废话越多,模型越难「剪辑」出高质量片段。
    • 站点整体健康度:速度、移动端体验、内链结构,继续影响抓取与评估。

    这些东西现在更像是「入场券」——没做到就很难出现在 SERP,更别说被 AI 引用。

    4.2 GEO 特有信号:内容是不是「适合被模型复用」

    生成式模型和人类读者的「阅读习惯」其实不太一样,它会更偏好:

    • 问题–答案结构:FAQ、问答式小标题、Checklist,都非常利于直接摘取;
    • 清晰的标题层级:H2/H3 下用短段落 + 列表承载一个具体子问题;
    • 统一的实体命名:品牌名、产品名、城市名、专业术语都要前后一致;
    • 高信息密度:减少无意义的过度废话,模型更容易抽取关键句。

    简单说,你写的是「答案素材」,而不是「流水账」内容,AI 就更容易把你拉进它的答案里,这就是 GEO 在内容层面的本质。

    4.3 品牌与用户行为:被引用是结果,也是信号

    多家数据分析把品牌出现在 AI Overviews 中与 CTR 做了对比,结果显示:当某品牌在 AI 概览中被点名或引用时,其自然和付费结果的点击率普遍高于未被引用时。出现一次引用,既往往说明这个品牌本身就更被信任,也会反过来强化用户对该品牌的偏好。

    在 GEO 逻辑下:

    • 品牌建设不只是为了转化率,也是为了「被 AI 选中」;
    • 高质量内容 + 品牌曝光 + 外部提及,会共同影响你在 AI Overviews 中的出镜机会;
    • 长期来看,「被引用的频次」会变成一个新的品牌资产指标。

    五、GEO 实战策略:在 AI 搜索中重新拿回价值

    5.1 接受「顶层信息流量结构性下滑」,调整目标心态

    先说最现实的一点:信息型流量的下降是结构性趋势,不会靠「多发几篇文章」解决。 我们需要主动把目标从:

    • 「每月自然流量破 N 万」
    • → 调整为「核心主题下,稳定被 AI 引用 + 获取高价值线索」

    对团队内部,可以直接用一句话统一认知: SEO 负责让你出现在结果里,GEO 负责让你出现在答案里。

    5.2 GEO 三层落地框架:内容层・结构层・技术层

    (1)内容层:从「解释概念」到「解决场景问题」

    • 减少只讲定义的干巴巴科普,多写方法论 + 步骤 + 案例 + 工具
    • 围绕同一主题(如「GEO 生成引擎优化」)搭建完整链路:认知 → 评估 → 选型 → 实施 → 复盘;
    • 在文章中显式加入 FAQ、小结段落,为 AI 准备好可引用的答案块;
    • 强调自己独有的视角和经验,而不是把英文互联网内容翻译一遍。

    (2)结构层:让内容更容易被「切片」与理解

    • 使用规范的 H1–H2–H3 层级,每个小节回答一个清晰问题;
    • 段落保持短小,每段只讲一个要点,减少长篇大段信息混杂;
    • 为重要主题搭建 Hub 页(如「GEO 专题」),将所有相关内容有组织地串起来;
    • 内部链接使用语义清晰的锚文本,而不是「点此」「更多」。

    (3)技术层:结构化数据 + 性能 + 多模态

    • 为核心文章添加 Article、FAQPage、Breadcrumb、Product、LocalBusiness 等 schema 标记;
    • 针对产品/服务页补充评价、价格区间、库存等结构化信息,方便 AI 在商业查询中引用;
    • 优化加载速度与移动端体验,这些依然是搜索与模型评估的重要基础信号;
    • 合适场景下加入图表、示意图等,把抽象概念具象化,帮助模型理解。

    5.3 按查询意图设计 GEO 策略

    (1)Top-of-Funnel 信息查询:从抢流量到「抢引用权」

    • 承认 AI 会吃掉绝大部分点击,但争取每一个关键入门问题的 AI 答案中,都有你的一句引用或品牌露出
    • 内容写得更清晰、更结构化,并在文内自然引导用户进入更深入的文章或专题;
    • 用这些入门内容承接品牌认知,而不是寄希望于它们直接带来大量转化。

    (2)中后段评估与决策查询:把专业度变成转化率

    • 围绕「方案」「流程」「预算」「选型」「对比」「坑与避坑」等关键词密集布局内容;
    • 在文章中嵌入 Demo/试用按钮、下载报告、预约咨询等强转化入口;
    • 使用 Product/Service/HowTo schema,让 AI 在「怎么做」「用什么」类型问题中更容易推荐你;
    • 这里是 GEO 能直接贡献收入的核心战场。

    (3)品牌 & 导航查询:构建你的「Brand GEO 防火墙」

    • 打造结构清晰的品牌故事页、关于我们、团队介绍、客户案例与核心 FAQ;
    • 确保官网与各渠道账号(视频号、公众号、GitHub、LinkedIn 等)之间有强内链关系;
    • 持续监控「品牌 + 评价 / 价格 / 怎么样」等组合词,在有负面或信息缺失的地方补充官方视角内容。

    六、如何量化评估 AI Overviews 对你网站的真实影响?

    6.1 第一步:按「是否触发 AI Overviews」拆分关键词

    • 使用 Ahrefs、Semrush 等工具识别哪些关键词会触发 AI Overviews,并记录类型(信息 / 商业 / 导航)。
    • 在 Search Console 中,用这些关键词创建过滤器,拆分统计展示量、点击量和 CTR;
    • 将结果做成对比:有 AIO vs 无 AIO,信息 vs 商业 vs 导航,观察哪一块受到的冲击最大。

    6.2 第二步:监控「被引用」而不只是「被排名」

    • 挑选一批核心关键词,定期人工或通过工具抓取 SERP 截图,记录 AI Overviews 中出现了哪些域名;
    • 做一张「Citation 表」,包括关键词、出现次数、引用位置(主段落/补充链接)、出现的品牌名称;
    • 长期观察:当你在某一主题下的被引用比例上升时,对应线索与收入是否同步改善。

    6.3 第三步:把 KPI 从「流量」挪到「高价值行为」

    在 GEO 语境下,单纯追求「自然流量总量」意义越来越有限,更合理的指标包括:

    • 来自搜索(含 AI 搜索)的试用注册 / 留资 / 咨询数量
    • 关键词集群级别的成交额 / 线索质量
    • 品牌词搜索量、直访比例的长期变化。

    向老板解释时可以这样总结: AI Overviews 的确让流量变少了,但它同时也让真正愿意点进来的人更有意图——我们要做的是,用 GEO 把这些高意向用户抓住。

    七、老板也看得懂的 GEO 行动清单

    1. 盘点内容资产:把现有文章按「信息 / 评估 / 决策 / 使用」打标签,看哪些已经被 AI 大量覆盖,哪些仍是刚需入口。
    2. 选 10–20 个核心主题:围绕主营业务(比如「GEO 落地」「AI 搜索增长」),挑出最关键的一批关键词,优先重构这些页面的内容与结构。
    3. 为核心页补齐 schema:Article + FAQPage 是基础;有产品/服务就加 Product/Service;有本地门店就加 LocalBusiness。
    4. 搭一个 GEO 专题 Hub:例如「生成引擎优化 GEO 专题」,把教程、案例、工具指南聚合在一个主题入口下。
    5. 建一套 AI SERP 监控表:每月抽样 50–100 个关键词,记录是否出现 AI Overviews、谁被引用,以及你是否在名单里。
    6. 内部对齐话术:让团队接受「信息型流量会降」这个现实,把资源集中投入到「高价值点击 + 被引用」上。

    八、小结:从「抢排名」到「抢被引用」

    回到标题问题:谷歌的 AI Overviews 对网站流量有何实际影响?

    • 它显著压缩了信息型查询能分配给网站的点击总量,零点击搜索大幅上升;
    • 它重新分配了商业和导航类流量,让官方站点和本地商家在某些场景下反而获得更多机会;
    • 它把「被 AI 引用」变成新的核心战场——谁能成为答案素材,谁就更可能赢得用户心智。

    这就是 GEO(生成引擎优化)存在的意义: 不再只为搜索引擎排序写内容,而是为生成引擎生产可复用的高质量答案块。 在 AI 搜索时代,流量数量会下降,但每一次触达、每一次被引用,反而更值得你全力以赴去优化。